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Summary. In this paper, we report our massively parallel implementation of grid 
techniques for the solution of the time-dependent Schr6dinger equation in three 
spatial dimensions on the Connection Machine, which is a Single Instruction 
Multiple Data (SIMD) computer. Most of the operations involved in this 
calculation may be executed independently for each grid point. The few opera- 
tions which cannot be executed independently are implemented using parallel 
communication algorithms. In addition, we report a simple modification of the 
multidimensional FFT, which provides an estimated 15% reduction in computa- 
tional complexity relative to the standard 2-D FFT. It is suggested that this 
modification may be very well suited to hypercube communication topologies. 
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1 Introduction 

In the past decade, the time-dependent formulation of quantum mechanics (QM) 
has been used to compute experimental observables for multidimensional prob- 
lems with tremendous success [ 1-3]. The results obtained using this approach are 
completely equivalent to those provided by time-independent approaches. While 
many molecular vibration/rotation problems have been successfully treated by 
time-independent techniques, the time-dependent approach offers an alternative 
computational approach to these problems for the following reason: the most 
popular time-dependent methods are the so-called "grid techniques". The advan- 
tage of these time-dependent grid techniques is that for a basis set of size N, the 
computational complexity scales as N or N log N whereas the complexity of 
time-independent techniques, scales as N 3 in the case of direct diagonalization or 
N 2 in the case of iterative procedures [4]. The N 3 scaling of the time-independent 
approach may be prohibitive when a large basis set is necessary [1]. However, the 
N 2 scaling of iterative techniques may somewhat alleviate this problem. The 
N log N scaling of the direct time-dependent approach compares favorably with 
either of these techniques. The time-dependent approach has been success- 
fully applied to a number of problems, including (a) vibrational dynamics on 
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dissociative electronic surfaces [5, 6] and (b) high energy dynamics on bound 
surfaces [7]. 

Although the use of time-dependent grid techniques avoids the N 3 complexity 
of matrix solutions, we are forced to face the difficulty of prohibitive running times 
which arise in the application of these techniques to large three-dimensional 
problems. Fortunately, wave packet propagation, using the exact grid techniques, 
is perfectly suited to the architecture of modern parallel computers. In this paper, 
we present a theoretically optimal implementation of some of the standard 
wave-packet propagation schemes in 3-dimensions on the CM-2, a SIMD parallel 
computer. 

2 The Connection Machine 

The Connection Machine (CM-2) may be viewed as a scalable array of up to 
64 K processors which concurrently execute commands issued by a front end 
computer. Each of these processors can have up to one megabit of memory and 
executes a normal serial-type instruction set, albeit more slowly than high speed 
serial computers. For the calculations in this paper we have used a 16 K partition 
with 256 Kbits of memory per processor. 

In addition to the processor instruction set, there is facility to support 
multidimensional inter-processor communication. There are two types of inter- 
processor communication- news (North East West South) and send. News 
communication is optimized for nearest-neighbor communication and the send 
communication is optimized for global communication patterns. What the 
current generation of CM-2s may lack in processor speed is compensated for by 
its parallel architecture. For an in-depth discussion of the machine, the reader is 
referred to [8]. 

3 Computational procedure 

The standard wave-packet propagation techniques can be viewed as two com- 
pletely separate operations: (a) the evaluation of the hamiltonian (spatial dis- 
cretization) and (b) the expansion of the propagator (temporal discretization). A 
common approach is low order differencing in time and space [9, 10]. Another 
approach is to use function spaces to treat these coordinates. In this paper, we 
utilize mainly FFTs for the spatial discretization and the Chebeychev expansion 
method of temporal discretization, which gives stable results as well as a great 
deal of flexibility in the choice of time step [2]. We also present second order 
differencing in space and time for the purpose of comparison and completeness. 

Here, we briefly review the algorithms used in the various steps of our 
solution, count the operations required, and examine their suitability for paral- 
lelization on the CM-2. An important consideration for the parallelization of any 
operation is whether it may be executed independently for each point on the grid. 
Any such operation is intrinsically parallel. Furthermore, the speed of such 
operations is not in any way limited by speed of inter-processor communication. 
Operations which cannot be executed independently for each grid point are not 
intrinsically parallelizeable and a parallel algorithm must be used to obtain 
optimal speed-up. Also, these will be limited by the speed of inter-processor 
communication. An algorithm is optimal if the speed-up with N processors is 
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directly proportional to N. In this discussion, we will assume a grid with 
N~ = AT= x No x Na points, where Na is the number of points along a given axis, 
and that there are a total of Np processors laid out as a P= x Pa square grid. 

3.1 Evaluation of the hamiltonian 

The hamiltonian is given by: 

^ ~L--h2 + V 1 (1) H =/Ym-m v2 

and its action on the state vector q(x, t) is simply the sum of a kinetic energy and 
a potential energy term. The potential energy term on the grid is evaluated by 
simple multiplication, that is: 

V6(x, t) = V(x) . 6(x, t) (2) 

Since the potential is real valued, this requires a single real times complex (R x C) 
multiplication at each grid point which may be executed independently for each 
grid point. 

3.2 Evaluation of the kinetic energy operator 

The action of the kinetic energy operator is discussed for a second order finite 
difference scheme and the fourier transform method. 

3.2.1 Evaluation of kinetic energy operator using finite difference scheme. The 
expression for the kinetic energy operator I using a second order finite difference 
scheme is: 

q,, - 0 i - ,  ~,,+l - 0, 
l l 1 

~ l ' ( X i )  - -  l - -  12 (2oi - @ i + l  - @ i - 1 )  ( 3 )  

where 1 is the distance between grid points. This requires two R x C multiplies and 
two complex plus complex (C + C) adds for each grid point. In two dimensions, 
this operation, which depends on the neighboring grid points, is appropriate to 
the CM-2's news communications. The three-dimensional analog of this formula 
is very easily implemented using standard circular shift operations. 2 

3.2.2 Evaluation of kinetic energy operator using the fourier method. We recall 
that: 

FT(f(=)(x)) = ( -- i k )nFr ( f  (x)) (4) 

where FT( f (x ) )  indicates the fourier transform off(x) .  Thus, in order to evaluate 
the kinetic energy operator, we simply take the fourier transform, multiply by 
- - k  2, and take the inverse fourier transform. That is: 

VZ~/(x) = F T -  l( _ k 2FT(O(x)) (5) 

This is for the 1-dimensional case the extension to higher dimensions is clear 
2 Fort ran 90 CSHIFT operations 
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In order to speed this process, a fast fourier transform (FFT) is used. For  a 
review of the FFT  and a discussion of the particulars which are relevant to its 
implementation on the CM-2, we refer the reader to [11-13]. It is important to 
note that if the vector k in Eq. (4) is arranged in bit-reverse order, the derivative 
may be computed without bit-reversing the output of the FFT. 3 The communica- 
tion involved in a bit-reversal is approximately equal to the communication 
involved in the FFT. By initializing k appropriately, we can avoid the need to 
undo the bit-reversal of the FFT  output. On a parallel computer where the F F T  
performance is limited by communication speed 4 this will roughly halve the time 
involved in computing the action of the kinetic energy on the wave-function. 

Recently, we have begun to consider possible algorithmic changes which may 
speed the multidimensional FFT  on the CM-2. We have observed that multi- 
dimensional FFTs may be written as a sum of smaller multidimensional 
FFTs instead of the standard sequence of one-dimensional FFTs. We shall refer 
to the standard multidimensional FFT  as the axis-sequential FFT. Our "mixed- 
axis" F F T  has two advantages. First, the computational complexity is decreased 
by 15% over the axis-sequential FFT. Second, from the point of view of a 
parallel implementation, the "mixed-axis" approach may simplify the data flow 
between successive stages of the operation. We present the details of the mixed 
axis F F T  in Appendix A. 

3.3 Integration in time 

3.3.1 Second order differencing in time. The formula for obtaining the solution 
of the time-dependent Schr6dinger equation (TDSE) using second-order 
differencing in time is obtained as follows. First, we write the time derivative 
using the second order difference formula: 

#t~ O(t + At) - ~ ( t -  At) 
_ ( 6 )  

3t 2 At 
By equating - i lqO/h  to OO/8t and rearranging this equation, we obtain: 

2i At HO 
~(t + At) ~ O(t - At) h (7) 

Time stepping in this scheme requires a R x C multiply and a (C + C) add for 
each grid point once HO has been evaluated. This operation may be executed 
independently for each grid point. 

3.3.2 Expansion of  propagator in the Chebeyehev polynomials. The integration in 
- -  it?l d t 

time is done by expanding the propagator e h in the Chebeychev polynomial 
set. That is: 

i a A t  N c  f A E A t ~  
~ ( t + A t ) = e  h ~ ( t ) = n = o  ~ a,,L 2h J (°"[-ilq"°r']~k(t) (8) 

where: 

11 nr?ror m = 2 / q  - - / (1 /2  AE + Vmin) (9) 
AE 

3 This observation applies to any implementation of the FFT based grid techniques 
4 or, in the case of a serial implementation, the time to do the necessary subscript arithmetic and 
permute an array in memory 
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and AE = Emax- Emin'Emax and Emin are the maximum and minimum eigen- 
values o f / t  respectively and Vmi, is the minimum of the potential energy function. 
The coefficients a, are given by: 

f_  ei~x~n(X) 
a~[c~]= i dX[ l -x2 ] l / 2  2Jn(c0 (10) 

where e = (A E A t)/(2h) and ao (c0 = Jo (e). The Chebeychev polynomials qS. (..~) are 
related by the recurrence relation: 

q~. ()?) = 2Y?~b. -1 (-'Y) ~- q~n - 2(~'~) (11) 

which simplifies the application of the series operator to the wave-function. In this 
case X = -iI~orm. Thus, in order to evaluate Eq. (8), we need only retain the 
value of the two previous Chebeychev polynomials at each grid point. This means 
that memory demand does not increase as a function of the number of terms in 
the Chebeychev expansion. This thrifty use of memory is important because each 
processor in the current generation of massively parallel computers has relatively 
limited memory. The Chebeychev expansion of the propagator requires 
2Nc(R x C) multiplies and 2Nc(C + C) adds for each time step At, in addition to 
Arc hamiltonian operations to evaluate the terms of Eq. (8) using Eq. (11). The 
series in Eq. (8) is convergent because the coefficients an decrease exponentially 
when the argument exceeds the summation index. This makes the Chebeychev 
expansion precise for an arbitrarily chosen time step [2]. 

3.4 3-D implementation 

In the current implementation, we have considered grids up to size 
128 x 128 x 128 = 221 on a partition of 16 K processors. This amounts to more 
than one grid point per processor and we have a virtual processor ratio (VP ratio) 
of 128. A VP ratio of 1 would give us even better performance. In order to lay 
out the grid on the physical machine, we have placed one dimension of the grid 
in processor and the other two dimensions are formed over processors as 
illustrated in Fig. 1. The number of machine cycles necessary to carry out the 3-D 
propagation is summarized in Table 1. 

In Fig. 1, the first two indices of the array Auk form the processor grid Pij 
while the index k indicates an "on processor" offset. Although the "k axis" 
operations are not executed at once for every k, they are simultaneously executed 
for every ordered pair (i, j)  on the processor grid. Further, all "k axis" computa- 
tions are local to a single processor. This yields additional speedup by allowing 
us to avoid inter-processor communication. As a result, we observed that 
performance scales super-linearly in going form 2-D to 3-D. While we 
defer detailed discussion of performance issues to a subsequent publication, 
for the purposes of this conference, we note a performance of approximately 
450 MFlops on a 16 K partition during the FFT operations. This scales to 
1.8 GigaFlops on a full size machine. 

4 Summary 

We have demonstrated the implementation of grid techniques commonly used in 
time-dependent approaches to quantum dynamics on the CM-2, a SIMD parallel 
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Fig. 1. CM layout ~ r  3-D implementation 

Table 1. Computational requirements: 3-D implementation 

Estimate of machine cycles used in the various propagation schemes - 3-D 

Hamiltonian $ Time--* Second Order Difference Chebeychev expansion 

Fourier transform Serial N](7 + 30 log 2 Na) N~(SN c + 30 log 2 Na) 
Parallel N~(7 + 30 log 2 Na) Na(8N c + 30 log 2 N~) 

Finite difference Serial 22N ] N](8N c + 18) 
Parallel 22N~ N~(8Nc + 18) 

N a Number of grid points per axis 
Ng ( =Na x Na x Na) Number of total points on grid 
Po Number of processors per axis 
Np (=Pa x Pa) Total number of processors 
N c Number of terms in Chebeychev expansion 

computer. We have observed that these techniques are easily and efficiently 
implemented on this machine. As a caveat, we point out that our present 
implementation is in three cartesian dimensions with one dimension treated 
serially. This has direct implications for real molecular systems which would 
invariably be treated on SIMD architectures using the present layout. The 
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scaling properties detailed in this paper are therefore applicable in this realm. 
We feel that the potential offered by this approach will significantly enhance 
the application of these techniques to many problems of interest in chemical 
dynamics. 

Appendix A: The mixed axis FFT 

Here we describe our idea to enhance the performance of multidimensional FFTs 
in general. These enhancements may be suitable to the architecture of SIMD 
machines with a hypercube topology. We will assume that the reader is familiar 
with the standard Cooley Tukey FFT  in one dimension [11]. The traditional 
approach to the multidimensional FFT is to compute the F F T  of the axes 
sequentially. For an array Aij, we would compute the F F T  of the first axis of Aij 
for all j ' s  simultaneously and then we would compute the F F T  of the second axis 
for all i's simultaneously. The standard 2-D FFT is written as: 

I Z~] = (J) N 
r n = l  n = l  

If N and M can be factorized in terms of two smaller integers such that N = PQ 
and M = R S  and we substitute Zpqrs : Zp + p(q_  1)r + R(s 1) for z,i we obtain: 

R S P Q 
Zij ~--- Z ('O(~/--1)(r 1) Z ('0RM((i--I)(s--I) 2 0)(NJ--1)(p--l) 2 WP(J 1)(q-1)Zpqrs (A.2) 

r = l  s = l  p - -1  q = l  

Following Ref. [11] we note that ~o~t =COs and COPN=C~O. If  we make this 
substitution and exchange the sum over s with the sum over p, we have: 

2i j = O ( ~ /  1)( r -  1) (D(N j l )(p--  1) O.)~ l)(s--1) E (D~--1) (q  1)Zpqrs ( 1 . 3 )  
r = l  p = l  s = l  q = l  

Let us refer to the bracketed quantity in Eq. (1.3) as T,j(p, r). We see, following 
the one-dimensional derivation in [11], that T~j(p, r) is S and Q periodic in the 
indices i and j respectively. Now, if we assume that N = M = 2 k and P = R = 2 
and Q = S = 2  k - l ,  we have: 

2 2 

2ij = ~ co(~ - l)(r-l) ~] c ~  l)(p-l)T,j(p, r) (1.4) 
r - - I  p - - I  

T~j(p, r) is equal for 2,:, 2(,+ N/:)j ,  2i.(j+ N/2), and 2~+ u/2j+ N/2. In order to compute 
these four quantities, we need to compute: Ti:(1, 1), Tij(1, 2), Tij(2, 1), and 
T,j(2, 2). The steps involved in this final part of the computation are illustrated 
in Fig. 2. These two steps require 3 complex multiplies and 8 complex adds in 
order to compute this stage of the FFT  for 4 grid points. This gives us 2 complex 
adds and an average 3/4 of a complex multiply, or 8.5 operations for each of the 
N 2 grid points. Since the T~j(p, r) are FFTs of size N/2 x N/2,  we may repeat 
this algorithm recursively k times until we are computing a 1 x 1 F F T  which is 
equal to the value of a single grid point. 

The 2-D F FT  of an N x N grid will require log 2 N such stages - giving us a 
total of 8 . 5 N  2 log2 N operations instead of the 10N 2 log2 N operations which are 
required in the axis-sequential FFT. A similar analysis may be applied in 3-D. In 
addition to this algorithmic improvement, we also wish to point out that the 
output of each stage of this FFT is the input for the next, which should allow of 
pipelining of the data between the stages of the FFT. 
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Fig. 2. Schematic diagram of the 
two parts of a single stage of the 
mixed-axis 2-D FFT 

Acknowledgments. The authors wish to thank the NSF for partial support and Thinking Machines 
Corporation for computer time and expertise. In particular, we wish to thank Adam Greenberg, J. 
P. Massar, Robert Krawitz, and Doug MacDonald of Thinking Machines for helpful discussions. 

References 

1. Kosloff R (1988) J Phys Chem 92(8):2087 
2. Gerber RB, Kosloff R, Berman M. (1986) Computer Physics Reports 5(2):59 
3. Neuhauser D, Judson RS, Jaffe RL, Baer M, Kouri DJ (1991) Chem Phys Lett 176(6):546 and 

references therein 
4. Thomas D (1979) J Chem Phys 70(6):2979 
5. Chasman D, Tannor DJ, Imre D (1988) J Chem Phys 89(11):6667 
6. Yun Shi, Tannor OJ (1990) J Chem Phjys 92(4):2517, Yun Shi's Thesis 
7. Chasman D, Silbey RJ, Eisenberg M (1990) Chem Phys Lett 175(6):633 
8. Hillis WD (1985) The Connection Machine. MIT Press, Cambridge, Massachusetts. ACM 

Distinguished Dissertation 
9. Richardson JL (1991) Comp Phys Comm 63:84 

10. DeRaedt H (1987) Comp Phys Rep 7:1 
11. Conte SD, de Boor C (1980) Elementary numerical analysis. McGraw-Hill, NY 
12. Johnsson SL, Krawitz RL, Frye R, MacDonald D (1989) Cooley Tukey FFT on the connection 

machine. Technical Report NA89-4 Thinking Machines Corporation 
13. Chasman D, Silbey RJ, Eisenberg M (1991) Theor Chim Acta 79:175 


